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Heterogeneous diffusion models let one combine the analysis of
intrinsic propensities with that of intrapopulation contagion,
and to disaggregate contagion effects into individual sus-
- ceptibilities, the infectiousness of prior adopters, and the social
proximity of prior-potential adopter pairs. This paper reports
the results of a series of Monte Carlo simulation studies that
investigate estimation issues for this class of models. Graphical
analysis of population-level hazard rates is shown to provide
litrle insight into these processes. We focus on the properties of
maximum likelihood estimators, considering variation across
parameter values and different forms of model misspecification.
When models are correctly specified, we find few conditions
under which estimation appears problematic. Difficult cases in-
volve binary networks where network linkages have very strong
effects or network density is high. Estimation deteriorates in
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some characteristic ways when models are misspecified. For
example, propensity and susceptibility effects are readily con-
fused. An effective model specification strategy is to include
variables in all theoretically plausible components of the model
rather than to test alternative covariate locations sequentially.
Processes where a covariate affects the hazard in multiple ways
(for example, has both propensity and infectiousness effects) are
successfully parsed in correctly specified models. In general,
results offer considerable encouragement for analysts who wish
to estimate and test heterogeneous diffusion models.

Considerable effort has been made in recent research to specify the
lines along which social influence flows. Interest in this problem
stems largely from Burt’s (1987) discussion of social cohesion and
structural equivalence as alternative ways in which populations are
meaningfully connected (also see Burt 1983; Friedkin 1984; Marsden
and Friedkin 1993). This discussion carries substantial theoretical
interest because it addresses the relative importance of direct social
relations, structural location, and competition as bases for social
action. Recent empirical work in sociology seeking to specify diffu-
sion processes includes Knoke (1982) on municipal reform as a geo-
graphic phenomenon, Strang (1990, 19914a) on decolonization within
empires and regions, and Davis (1991) on corporate strategies medi-
ated by interlocking directorates.

The effort to specify substantive linkages underlying patterns
of diffusion has deflected attention away from deterministic, homoge-
neous diffusion models (for a review, see Mahajan and Peterson
1985) and toward models that are both more micro-analytic and
more relational. In particular, Strang and Tuma (1993) suggest model-
ing diffusion within an expanded event-history framework (see also
Marsden and Podolny [1990] and Strang [1991b]). A heterogeneous
diffusion model permits the testing of specific hypotheses about so-
cial structure while meshing well with the intrinsically temporal char-
acter of an adoption process. This modeling framework has been
applied empirically by Strang and Bradburn (1993) and Greve
(19944, 1995). A related but different model has been developed and
applied by Tuma and Ingram (1993).

The heterogeneous diffusion model offers an alternative to
two current approaches to studying diffusion in a social structure.
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Static approaches to modeling social structure, such as the spatial
effects models discussed in Doreian (1981), seem less satisfactory
given the key role of temporal ordering and the presence of time-
varying covariates and right censoring in adoption processes. Log-
linear models, such as those used to examine how the diffusion of
diseases is channeled by social networks (Morris 1993), are similar to
the heterogeneous diffusion model because they are also non-
equilibrium models of diffusion. The present framework is more
general, however, because it can easily be used to model a mul-
tivariate causal structure.

Diffusion models posit interdependent events—what one actor
does affects what other actors do thereafter. The analytic difficulties
produced by interdependent events are attenuated by the organiza-
tion of the process through time: earlier events can affect later events,
but later events cannot affect earlier events. Despite this simplifica-
tion, it is unclear a priori how well one can empirically estimate mod-
els of stochastic processes where events are interdependent.

Concerns about estimation are heightened by the complexity
of these models. Excepting recent work, most analyses of diffusion
parameterize the process in a fairly simple way. Frequently only
deterministic models are considered, and structures of communica-
tion and influence are often treated as homogeneous. When hetero-
geneity is incorporated, it is common to assume a particular “mixing”
distribution or to include only a single measure of social proximity. In
contrast, the heterogeneous diffusion model we consider permits a
highly disaggregated and relationally specific analysis of diffusion.
Whether quality of estimation can keep pace with computability be-
comes an important issue, which this paper addresses.

Strang and Tuma (1993) provide a limited demonstration of the
estimability of heterogeneous diffusion models with measured covari-
ates. They generated several populations of event histories under a
specific heterogeneous diffusion model and then estimated the model
by maximum likelihood using the simulated histories as data. All
parameters were recovered without bias and with a relatively low
estimated variance. In particular, the quality of the estimated parame-
ters characterizing contagion between pairs in the population was
actually slightly better than that of parameters characterizing intrinsic
propensities to adopt (Strang and Tuma 1993, table 1).
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But an empirical demonstration of successful estimation is
hardly sufficient. To be generally useful in empirical research, the
quality of estimated parameters needs to be good across a wide range
of conditions. This paper explores the quality of estimated parame-
ters in heterogeneous diffusion models, focusing especially on prob-
lems common in empirical research. Three main lines of inquiry are
pursued.

We first plot nonparametric estimates of the hazard rate and
the integrated hazard rate in the population to gauge how variation
in parameters affects the overall pattern of events in a population
driven by different types of diffusion processes. Attention to diffu-
sion as a causal process is often motivated by particular empirical
patterns in data, such as a sharply rising hazard over time. Given the
generality permitted by individual-level effects within a stochastic
framework, however, the reliability of this strategy seems uncertain.

Second, we explore how estimator quality varies across sub-
stantively different heterogeneous diffusion models. One main limita-
tion of Strang and Tuma’s (1993) Monte Carlo study is its focus on a
single set of parameter values. We investigate how estimator quality
depends on the coefficients of different types of covariates, focusing
on the cases where particular quantities numerically dominate the
process.

Third, we examine estimator quality under various forms of
model misspecification. We consider situations where models are
overspecified (i.e., include variables not actually used to generate
the data analyzed) and underspecified (i.e., exclude variables used to
generate the data). We further examine how estimator quality and
inferences based on standard statistical tests fare under more subtle
forms of misspecification, where a covariate having one kind of ef-
fect on the diffusion process is modeled as having some other kind of
effect. (For example, a covariate that affects susceptibility to others’
influence may be incorrectly modeled as affecting the actor’s propen-
sity to adopt; see below for a definition of these terms.) We evaluate
strategies for exploratory data analysis where particular covariates
are correctly tied to adoption but the location of their impact on the
diffusion process is not well understood.

We should note that the interdependence of events presumed
in diffusion analyses also raises issues about estimation from incom-
plete data on populations. The diffusion models we study (and all
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those with which we are familiar) presume population rather than
sample data. Sampling from a population when events are interde-
pendent leads to incomplete information about variables on the
right-hand side, since adoption events enter the estimation equation
both as explanatory covariates and as outcomes. This makes it un-
clear whether, and under what conditions, one can correctly estimate
a diffusion model without having data on the entire population. The
analysis of sample data is deferred to a companion paper (for prelimi-
nary results, see Greve, Strang, and Tuma 1993).

1. HETEROGENEOUS DIFFUSION MODELS

The heterogeneous diffusion model proposed by Strang and Tuma
(1993) has several distinctive features and advantages relative to the
classical homogeneous diffusion model and previous extensions
thereof. First, “heterogeneity” here refers to measured covariates.
Some previous authors have proposed diffusion models with “mixing
distributions” in which social distance is assumed to be a random
variable with some postulated distribution (e.g., gamma, logistic); for
a review, see Mahajan and Peterson (1985). Such models may fit
empirical data better than the classical homogeneous model, but they
do not give insight into the social mechanisms affecting adoption.

Second, the model incorporates both “intrinsic” propensities
to adopt and contagion resulting from the prior adoptions of others
in the population. Intrinsic propensities include internal predisposi-
tions of the focal case, and the impact of external sources of diffusion
(such as communications from outside the adopting population that
directly reach potential adopters). By contrast, contagion operates
via social linkages between pairs of population members, one still at
risk of adoption and another that has already adopted. Its impact is
decomposed into factors describing a focal case’s susceptibility to
contagion, the infectiousness of the prior adopter, and the pair’s
social proximity.

Third, like the diffusion models considered by Bartholomew
(1982), the heterogeneous diffusion model proposed by Strang and
Tuma (1993) is a stochastic model. In this respect it contrasts with the
many deterministic diffusion models that have been applied empiri-
cally in the past. Hence, even for a fixed set of parameter values and
for given values of covariates, realizations of the heterogeneous diffu-
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sion model exhibit random variation in the timing of events. More-
over, if the covariates have a random distribution (which we assume
below), realizations of the covariates introduce further variation in
the adoption process. Stochastic variability in the process compli-
cates understanding the implications of the model.

In this paper, we examine the additive model defined in Strang
and Tuma (1993). Consider a partition of the members of a popula-
tion into two sets: The set N(¢) consists of all nonadopters at time ¢,
and the set ¥(¢) consists of prior adopters (termed “spreaders” by
Strang and Tuma). A representative member of N(¢) is denoted by n,
and one in ¥(¢) by s. The sizes of the two sets are N(¢) and S(2),
respectively. The hazard rate for the members of N(¢) (the risk set) is
modeled as

r () = exp(a’x,) + > exp(B’v, + v'w, + 8'2,)

SES()

=exp(a’x,) + exp(Bv,) > exp(y'w, + &z,). (1)

SEF(1)

Here,

* X, is a vector of variables describing n’s propensity to adopt (i.e.,
net of any contagion via intrapopulation linkages).

* v, is a vector of variables describing n’s susceptibility to contagion.

+ w, is a vector of variables describing the infectiousness of s (for all n).

z,, is a vector of variables describing the proximity of n and s (the

infectiousness of s for a specific n or equivalently, the susceptibility

of n for a specific s).

We take the first elements of x,, and v,, to be unity and refer to
the associated parameters as the propensity and contagion intercepts,
respectively. The former indexes the baseline propensity to adopt and
the latter the baseline impact of adoptions by others. Note that by
convention we locate the contagion intercept in the susceptibility term
(i.e., we associate it with v,). We do not include a leading element of
unity in the vectors associated with infectiousness and social proximity
because only one intercept in the contagion component is identifiable.

A natural alternative formulation of diffusion treats prior
events as multiplying the hazard:
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r.(f) = exp(a’x,) [ exp(Bv, + v'w, + 82,). )
SEF(r)
For applications, see Levin, Levin, and Meisel, 1987; Marsden and
Podolny 1990; Strang 1991a; and Burns and Wholey 1993. More
complex models might add temporal heterogeneity to either the addi-
tive or multiplicative model so that influence might vary with time
since adoption; see Strang and Tuma 1993 for some discussion.!

Because of space and resource limitations, we restrict our
attention to additive models of diffusion. To our knowledge, this
paper provides the first broad analysis of the estimation quality of a
microlevel diffusion model via simulation methods, and the range of
issues considered is quite large. We anticipate that further statistical
and empirical work on this and other diffusion formulations (such as
multiplicative diffusion models and models that incorporate explicit
time dependencies) will lead toward cross-model comparisons. As a
first step, this paper thus seeks a close assessment of estimation
issues for one relevant formulation of a diffusion process.

Given this strategy, some review of the motivation for an addi-
tive structure for diffusion influences is in order. Like most other
hazard models, perhaps the first important property of the functional
form in (1) is nonnegativity; the form of the model precludes the
estimation of theoretically meaningless negative hazards. Beyond
this, however, we would point to two important properties of an
additive formulation.

First, an additive formulation does not impose structure on
how the influence of prior adoptions varies with their historical order-
ing. The sth event simply increments the hazard for the previous (s —
1)th event by

Ar =r (1) — r_(t) = exp(B'v, + y'W, + 62,,).
€)
In contrast, many formulations imply a systematic relationship be-

tween historical order and contagious influence. For example, the
multiplicative framework in (2) implies

Ar = [exp(B, + y'w; + 8'W,) — 1] 1, (0). 4

Either the additive or multiplicative model may include time-varying
covariates whether or not there is temporal heterogeneity in influence.
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Here the impact of each additional event on the hazard rate is propor-
tional to the accumulated influence of all prior events as summarized in
r,_(f), therate for the previous, (s — 1)thevent. When contagiousinflu-
ence is positive (probably the most common case), (4) implies that
later adopters have larger effects than earlier ones. This is often an un-
desirable implication; in fact, it is common to seek models that specify
decreasing incremental influence (Mahajan, Muller, and Bass 1990).

A second motivation for an additive formulation is that it
treats intrinsic propensities and contagious influence as more separa-
ble than do alternative formulations. Since modeling contagion in
terms of measured covariates is in its infancy relative to research
detailing variation in intrinsic propensities, and since we regard analy-
ses of contagion as speaking to central sociological concerns, this
separability appears an attractive feature. Models that reduce the
likelihood of confusing propensities with contagion seem useful tools
for beginning to map out channels of influence within populations.?
One aim of this paper is to ascertain how well this logic translates
into practice, by asking whether in fact estimation can effectively
distinguish variations in propensities from variations in contagious
influence (see especially Sections 4.3-4.5).

2. SIMULATION METHODOLOGY

We perform a series of Monte Carlo studies to evaluate characteris-
tics of estimation of the heterogeneous diffusion model. In each
condition, we examine a specific instance of the general model de-
fined in (1). We perform 50 trials for each condition—increasing the
number of trials to 100 had little impact on conclusions but doubled
computation time. In each trial, event histories for the population
are generated using pseudo-random methods.3 These histories are

2We should also note the most obvious limitation of the additive formula-
tion in (1): It allows only positive or reinforcing effects of contagion. Multiplica-
tive formulations, by contrast, permit prior adoptions to decrease as well as
increase the hazard of the focal case, capturing empirical contexts where actors
seek to avoid the actions of (certain) others in the population. Where the as-
sumption of positive contagion is not warranted, some alternative or amendment
to the additive formulation portrayed here must be employed.

3We used a program called EHG (Event History Generator), which was
begun by James C. Crutchfield and extensively enhanced by Eric Bloch under
Tuma’s guidance. Later it was modified for the purpose of this study by Bloch
and Greve.
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then analyzed under some model of interest. Analyses utilize a ver-
sion of RATE (Tuma 1980) modified to estimate the heterogeneous
diffusion model in (1) by the method of maximum likelihood.

These Monte Carlo studies are designed to investigate diffusion
under conditions similar to those usually encountered in empirical
research. In particular, many empirical analyses of diffusion examine
populations with 50 to a few hundred members—such as closed com-
munities of people, organizations within an industry or geographical
area, the American states, or countries. It is unclear whether the
asymptotic properties of maximum likelihood estimation translate
into coefficient estimates close to true parameter values for such
population sizes, especially given the information demands made by
complex diffusion models. In all trials reported below, we study a
population of 100 potential adopters.* At the beginning time, ¢, = 0,
all 100 are at risk of adoption, and no events have occurred. Over
time, all population members experience a single, nonrepeatable
adoption event.

Covariates measuring propensity, susceptibility, and infectious-
ness are drawn from statistically independent, standard Gaussian
distributions using a pseudo-random number generator. Since Gaus-
sian distributions are symmetric, the impact of a covariate on the
diffusion path depends only on the magnitude of its coefficient and
not its sign. We therefore examine only positively signed parameters
for all covariates, without loss of generality.> Conclusions might dif-
fer if the covariates had some other type of distribution (e.g.,
Bernoulli, log-Gaussian) or were correlated (but see Section 4.5 for
some evidence on estimation under conditions of perfect collinearity
across model components).

Covariates for social proximity are constructed to parallel the
ways social researchers typically think about and measure linkages in
a social network. The most common version has the form of a binary
incidence matrix, where a link from one member of the population to
another is indicated by a value of one and the absence of a link

4Exploratory study of populations with up to 500 members revealed a
moderate degree of improvement in estimation as the size grows, so the results
below should be relevant to such population sizes. Simulating populations over
500 is extremely time-consuming because the time to create and analyze datasets
is quadratic in population size.

5This simplification would limit generality if the covariates had an asym-
metric distribution—for example, a log-Gaussian distribution.
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equals zero. In most analyses reported below, cach potential adopter
is linked to k randomly chosen alters. The resulting incidence matrix
is thus asymmetric with zeros on the diagonal. In most analyses, & is
set to three; however, we also report some results for social networks
that are denser and more symmetric (i.e., more socially segregated).
A link from alter to ego is assumed to be constant over time and to
have the same effect for every pair.

We also examine a few conditions where the measure of social
proximity is continuous. Like previous researchers,® we find it useful
to treat social proximity as a nonnegative and bounded quantity. We
construct a measure of proximity with these characteristics in a two-
step procedure. First, we draw a value «, from a (0,1) uniform distri-
bution for each population member. Then the social proximity z;; of a
representative pair of individuals i and j is defined as z; = [u; — u].
This implies that the probability density of z is f(z) = 2(1 — z).

Parameters in the heterogeneous diffusion model are esti-
mated by the method of maximum likelihood. We maximize the
logarithm of the likelihood, rather than the likelihood itself. Under
right censoring, this is (Tuma and Hannan 1984, p. 126)

logL= > d,logr, () + log G,(1t,), - (5)
neA)
where d,, is an indicator variable equalling one if the case adopts and
G,(1|t,) gives the probability that n has not adopted by time ¢ for a
process starting at time ¢, and r,(¢) is given by equation (1).

To summarize the distribution of estimates across the 50 tri-
als, we report the mean and standard deviation of the estimated
parameters, as well as the average estimated standard error of each
parameter. The last comes from the variance-covariance matrix of
the maximum likelihood estimates of the parameters. A comparison
of the reported standard deviation across trials and the average
estimated standard error indicates whether the variability of the
estimated coefficient is correctly estimated (if the ratio is approxi-
mately unity). We also report the percentage of trials in which one
would reject the null hypothesis that the parameter is zero (at the

SFor example, Burt (1987, pp. 1295-96, 1330-31) calculates structural
equivalence weights as a normalized power transformation of Euclidean dis-
tances obtained from an incidence matrix.
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.10 significance level for a two-sided test) using the estimated pa-
rameter and estimated standard error in the usual hypothesis-
testing procedure. Additional characteristics of the event histories
and the estimation process are given when of interest.

As is well known, maximum likelihood estimators have good
properties in large samples of independent and identically distrib-
uted cases. Under quite general regularity conditions, ML estimators
are asymptotically normal, unbiased, and consistent. Tuma and
Hannan (1984, ch. 5) demonstrate that these large sample properties
translate well in exponentially distributed event histories of moder-
ate size (i.e., a few hundred cases). However, when analyzing a
diffusion process, event times are (hopefully) identically distributed
but are not statistically independent—indeed, the dependence is of-
ten the primary object of study. The quality of maximum likelihood
estimation in this situation is unknown, even asymptotically.

We caution that simulation studies of estimator quality (not
only ours but those by other investigators) are only suggestive. It is
always the case that features of the process not explicitly studied
might produce qualitatively different patterns of results. For this
reason, analytical results are preferable. However, analytical results
for ML estimation generally hold asymptotically, providing unclear
guidance for diffusion research on modest-sized populations. And
analytical results for heterogeneous diffusion models, even in the
asymptotic case, are not readily available. Bartholomew (1982) notes
the difficulty of obtaining closed form expressions for simple homoge-
neous diffusion models. The properties of heterogeneous diffusion
processes surely involve a considerable increase in complexity and
mathematical difficulty. Results of simulation studies in such situa-
tions can be highly informative, even if not definitive.

3. GRAPHICAL EXAMINATION OF
DIFFUSION PROCESSES

We begin by examining graphs of the hazard rate and the integrated
(or cumulative) hazard rate versus time for various diffusion pro-
cesses. We use the estimator of the integrated hazard rate proposed
by Nelson (1972), which Aalen (1978) proved is unbiased and has
minimum variance. The slope of the integrated hazard rate gives a
nonparametric estimate of the population-level hazard rate, which
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makes visual inspection of the overall time path of the population-
level diffusion process relatively easy. We also plot the corresponding
estimates of the hazard rate, smoothed to make the overall pattern
clearer.”

We begin with an arbitrarily chosen homogeneous diffusion
process—the simplest interesting version of (1). This model includes
only intercept terms for the propensity to adopt and for contagion.
The hazard rate r,(t) is set to equal exp(—6) + Z.4(¢) exp(—8) =
exp(—6) + exp(—8)S(¢) = .0025 + .00035(¢), where in this study the
maximum value of S(¢) is 99 (i.e., all members of the population but
one have adopted). Figure 1 gives the integrated hazard rate of one
realization of this process and the corresponding estimates of the
hazard rate.

In Figure 1 the integrated hazard rate tends to curve upward;
correspondingly, the hazard rate tends to increase with time. This
pattern occurs because each prior event adds exp(—8) = .0003 to the
hazard rate according to the model. As events occur, the hazard rate
for cases that have not yet adopted rises, stimulating even faster
adoption by the cases still at risk. A graph of the cumulative number
of events versus ¢ (not shown) yields the familiar S-shaped curve
usually associated with diffusion processes. )

It is worth noting, however, that empirical estimates of the
hazard rate do not increase monotonically, even though the hazard
rate assumed by the model does increase monotonically. Different
trials yield plots with different appearances. The occasional dips in
the hazard rate plot (corresponding to flat segments of the integrated
hazard plot) result from stochastic variation.

The second condition we consider (see Figure 2) is governed
by a diffusion process that incorporates several kinds of individual
heterogeneity. The model is r,(f) = exp(—6+5x,) + 2 4(¢) exp(—8 +
2v, + 2w, + 4z,.). In contrast to the process displayed in Figure 1, this
process does not yield a population-level hazard rate that rises over
time. In fact, it falls sharply early in the process, declining to a very
low level.

The declining hazard rate in Figure 2 arises from population
heterogeneity. The population-level hazard rate declines because

"We use the variable-span smoothing algorithm developed by Friedman
(1984).
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FIGURE 1. Homogeneous diffusion, plots of integrated hazard rate and hazard rate.
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FIGURE 2. A heterogeneous diffusion process.
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cases with high propensities adopt relatively early. Since the esti-
mates graphed in Figure 2 do not control for population heterogene-
ity, the changing composition of the risk set produces a misleading
picture of the true temporal structure of the hazard rate for an indi-
vidual case in the population. Although the hazard rate of each case
still at risk is monotonically increasing with time (as intrapopulation
influences grow), change in the composition of the population at risk
leads the population-level hazard rate to decline over time.

Of the four classes of covariate effects considered in these
models, two tend to generate negative time dependence in the
population-level hazard rate. The two are heterogeneity in the pro-
pensity to adopt (x, above), and heterogeneity in susceptibility to
influence from others (v, above). When propensities to adopt are
large, cases with high rates experience the event quickly before conta-
‘gion effects have much overall impact. Similarly, as effects of social
contagion accumulate, highly susceptible cases adopt quickly, leaving
an increasingly immune population at risk.8

Heterogeneity in infectiousness does not produce negative
time dependence because w, refers to the prior adopter rather than
the potential adopter. It produces variability in the expansion of
contagious influence over time since adopters are differentially infec-
tious and infectiousness is unrelated to the time of adoption. But this
form of heterogeneity does not affect the composition of cases at
risk. Rather, the overall impact of heterogeneity in infectiousness is
to accelerate the diffusion process, ceteris paribus.

For example, almost the same model was used to generate
Figures 2 and 3; the difference is that in Figure 3 the infectiousness
parameter ¥ equals 6 rather than 2. Consequently, this process is
numerically dominated by variation in infectiousness, producing very
rapid occurrence of events.

It may seem surprising that variation in infectiousness should
have a net effect on the overall speed with which events occur, espe-
cially when (as is true here) the covariate is symmetrically distributed
around zero. This sort of acceleration occurs because the functional
form of the hazard rate is a sum of exponential terms. Since the

8These are both cases of the general result that heterogeneity in hazard
rates produces observed negative time dependence at the population level, dis-

cussed under the rubric of unobserved heterogeneity in the event-history litera-
ture (e.g., see Tuma and Hannan 1984, pp. 174-79).
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exponential function is everywhere convex, the hazard rate increases
as the parameter increases in value. This is easily seen when one
considers that exp(a + B) + exp(a — B) = exp(a)[exp(B) + exp(— B)]
> 2 exp(a) for any choice of @ and nonzero B. Positive w,’s increase the
impact of contagion more than negative w_’s decrease it.

Whether population-level time paths for the hazard rate of
events appear to accelerate or decline with time is thus a function of
the relative magnitude of different effects. When the contagion inter-
cept or infectiousness dominates the process, the adoption rate of
every case rises so steeply over time that the population-level hazard
rate rises with time. Where heterogeneity in propensity and suscepti-
bility dominate, cases with exceptionally high hazard rates experi-
ence events so quickly that the population-level hazard rate declines
with time.

Effects of social proximity on the time path in the population-
level hazard rate are more complex and less easily summarized.
Since they are a function of both the prior and potential adopter,
they do not unambiguously give rise to either positive or negative
time dependence. Of broader interest, perhaps, is the pattern pro-
duced by proximity in a network where members of cliques are close
(connected) to one another and far (disconnected) from members of
other cliques. This sort of structure tends to produce a time path in
the population-level hazard rate marked by waves, where each wave
consists of relatively rapid diffusion within one clique.

This pattern is illustrated in Figure 4, which displays the inte-
grated hazard rate and hazard rate of a population where z,, takes the
form of a partition of the population into two cliques of size 50. The
hazard is r,(t) = exp(—6) + Z,4(¢) exp(—8 + 10z,,). The population-
level time path is made up of two waves, each corresponding to the
acceleration of contagion within one of the two cliques. All members
of the first clique adopt between roughly ¢t = 3 and ¢ = 9, while those
in the second begin to adopt only after ¢+ = 17. (The hazard rate for
the first wave appears lower than the second because members of the
second clique are at risk, but are not adopting, during the period of

the first wave.) Although all cases are governed by the same model
with the same parameters, within-group contagion reinforces stochas-
tic variations in outcomes.

Figures 1-4 suggest that heterogeneous diffusion processes
can generate any sort of time path in the population-level hazard
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FIGURE 4. Heterogeneous diffusion with two cliques of adopters.
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rate. Fully homogeneous diffusion processes do exhibit a rising
population-level hazard rate (albeit one with stochastic variation),
but the introduction of heterogeneity complicates matters consider-
ably. Heterogeneity in the propensity to adopt and in susceptibility
to contagion produce apparent negative time dependence in the
population-level hazard rate. Heterogeneity in infectiousness leads to
acceleration in the population-level hazard rate. Most interesting of
all, social segregation within the population (i.e., cliques) produces
population-level hazard rates that vary nonmonotonically over time.

Thus examination of the population-level time path of the
integrated hazard rate or the hazard rate is of modest utility in analyz-
ing heterogeneous diffusion processes. Simple descriptive tools such
as plotting the hazard rate versus time may be useful in suggesting
major features of the process. For example, a wave-like pattern in
the hazard rate suggests that, if contagion is present, it is probably
dominated by a segregated social network structure. But only when
the process is fully homogeneous does the time path of the hazard
rate at the population level directly reflect the generating model. In
general, graphical analysis cannot be used to guide intuition about
whether a social process involves intrapopulation influence. Only
substantive argument or theory can do this, and only explicit models
incorporating individual sources of heterogeneity are of real use in
evaluating these conjectures.

4. ESTIMATION OF HETEROGENEOUS
DIFFUSION MODELS

We now move from graphical analysis to model estimation. We begin
with the parameter set examined in Strang and Tuma (1993), which
serves as a convenient starting point for exploring a larger parameter
space later. Panel 1 of Table 1 summarizes results from correctly
specified analyses of diffusion in a population of size 100.

As in Strang and Tuma (1993), point estimates are unbiased
and exhibit rather low variance. For example, the standard deviation
of estimates of the contagion intercept across the 50 trials is 0.68,
while the average estimated standard error across these trials is 0.70.
The similar magnitudes of these two measures of variability in pa-
rameter estimates indicates that the standard error computed within
trials agrees well with the empirical fluctuation of estimated parame-
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TABLE 1
Estimation of Diffusion and Nondiffusion Models
ML Estimate
True Average Reject H,
Parameter Value  Mean SD SE (%)

Panel 1: Heterogeneous Diffusion Model

Propensity intercept -60 -6.3 0.83 0.75 100
Propensity covariate 5.0 5.2 0.61 0.52 100
Contagion intercept -8.0 -83 0.68 0.70 100
Susceptibility 2.0 2.0 0.15 0.13 100
Infectiousness 2.0 2.1 0.50 0.44 100

Social proximity 4.0 4.1 0.39 0.41 100

Panel 2: Exponential Model

Intercept -3.0 -3.0 0.10 0.10 100
Covariate 2.0 2.0 0.09 0.10 100

Panel 3: Gompertz Model

Intercept -20 =20 0.12 0.12 100
Covariate 2.0 2.1 0.13 0.13 100
Time trend intercept -0.01 -0.010 0.003 0.003 100
Time trend covariate 0.005 0.0057 0.004 0.003 62

Panel 4: Average Correlation of Diffusion Estimates in Panel 1

Parameter 1) ) 3) 4) 5) 6)
(1) Propensity intercept  1.00 —-.93  —.09 .13 .02 .06
(2) Propensity covariate 1.00 .07 -3 -.02 -.06
(3) Contagion intercept 1.00 -.10 -89 =29
(4) Susceptibility 1.00 .04 .16
(5) Infectiousness 1.00 -.02
(6) Social proximity 1.00

ters across trials. (When estimator quality is poor, we usually see
high standard deviations across estimates and even higher average
standard errors.) The null hypothesis can be rejected for all covari-
ates in all trials. .

Panel 4 of Table 1 reports the average correlation of estimated
parameters for the heterogeneous diffusion model. Most correlations
are close to zero on average, indicating that change in one parameter
has little impact on the estimates of the other parameters. In particu-
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lar, correlations between parameters in the propensity component
and those in the contagion component are very low, indicating the
separability of these two classes of effects when a heterogeneous diffu-
sion process generates the data. (The magnitude of these correlations
would presumably rise if the independent variables were constructed
to covary in some systematic way; see Section 4.5 for some discus-
sion.) This separability provides the main estimation advantage of the
additive approach to diffusion modeling pursued in this paper.

Several pairs of estimated parameters are strongly related.
Parameters for the propensity intercept and covariate, as well as for
the contagion intercept and the infectiousness covariate, have a large
negative correlation on average ( = —.9). Estimated parameters for
the contagion intercept and social proximity are also negatively corre-
lated, but less strongly. All of these correlations follow from the
functional form of the model as a sum of exponentials, as discussed
for infectiousness above. As we see below, estimation problems can
arise from large correlations among estimated parameters.

It is helpful to put the estimation of a heterogeneous diffusion
mode] within the context of more familiar models. Here we briefly
compare the above simulation to corresponding analyses of exponen-
tial and Gompertz models. When there is no source of time depen-
dence other than that produced by measured covariates, the exponen-
tial model is a common baseline model in event-history analysis. In
the present context, it is also the special case of equation (1) in which
there is only a propensity to adopt and no contagion: r,(f) =
exp(a’x,). The Gompertz model is 7,(f) = exp(a’x, + B'u,t), where x,,
and u,, are in general different covariates. It provides the analyst with
a ready way of capturing monotonic shifts in the hazard over time
and might be used as an alternative way of modeling simple diffusion
processes, such as that displayed in Figure 1.

Panels 2 and 3 give results for correctly specified exponential
and Gompertz models. As with the heterogeneous diffusion model,
all parameters appear estimated without bias. Results for exponen-
tially distributed event histories show very little variance in parame-
ter estimates. The quality of estimates for Gompertz models is high
overall, but with some imprecision for the covariate that interacts
with time. The mean estimate for this parameter is off by more than
10 percent, the average standard error is large, and the null hypothe-
sis is correctly rejected in only two-thirds of the trials.
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Overall, Table 1 suggests that estimator quality for different
event-history models is roughly similar. Efficiency declines somewhat
as models and processes become more complex. Exponential models
of exponentially distributed event times are estimated well because
both models and data are simple. Gompertz models can be estimated
well overall but have some difficulty estimating interactions with time.
Results for the heterogeneous diffusion models show larger variance
in estimated effects than exponential models but seem able to parse
highly complex interdependencies within populations. .

4.1. Parameter Space Sensitivity

To explore sensitivity of estimator quality to parameter values, we
first consider whether strong effects of one type impede the estima-
tion of other types. For example, can contagion effects be detected
well in diffusion processes dominated by heterogeneity in propensi-
ties to adopt? Is infectiousness estimated accurately when individuals
vary substantially in their susceptibility to contagion? To examine
issues like these, we work from the set of parameters estimated in
Table 1 and sequentially increase each parameter by 4, which multi-
plies the effect by about 55 (given the exponential functional form).
Table 2 summarizes the results.

Panels 1 and 2 indicate that contagion effects can be estimated
well when propensities to adopt (i.e., effects existing independent of
intrapopulation linkages) dominate. Panels 4 and 6 reveal little sensi-
tivity to strong variation in susceptibility to contagion and patterns of
social proximity. In these conditions, parameter estimates appear
unbiased and standard errors are rather small.

A large contagion intercept and substantial heterogeneity in
infectiousness (Panels 3 and 5) make it difficult to estimate propensi-
ties to adopt. In both conditions, the effects of contagion accelerate so
rapidly that estimates of the propensity to adopt are based largely on
information about the timing of the first few events, after which conta-
gion effects dominate. What is perhaps most remarkable here, how-
ever, is that the parameters in the contagion term continue to be
accurately estimated even when the process occurs “in the wink of an
eye.” (Compare estimator quality with quartile adoption times in
Panel 8.)°

91t is important to note that there is no time aggregation in temporal mea-
surements here, which contrasts with the situation in much empirical research.

TABLE 2
Dominating Effect in Full Model
ML Estimate
True Average Reject H,

Parameter Value Mean SD SE (%)
Panel 1: Large Propensity Intercept
Propensity intercept -2.0 -2.0 0.30 0.30 100
Propensity covariate 5.0 5.1 0.32 0.28 100
Contagion intercept -8.0 -8.4 1.25 0.96 100
Susceptibility 2.0 2.0 0.18 0.17 100
Infectiousness 2.0 2.2 0.74 0.58 96
Social proximity 4.0 4.1 0.50 0.61 100
Panel 2: Large Effect of Propensity
Propensity intercept -6.0 -6.0 0.53 0.47 100
Propensity covariate 9.0 9.1 0.43 0.37 100
Contagion intercept -8.0 -83 1.69 0.87 100
Susceptibility 2.0 2.0 0.14 0.14 100
Infectiousness 2.0 2.2 1.07 0.58 98
Social proximity 4.0 4.1 0.49 0.47 100
Panel 3: Large Contagion Intercept
Propensity intercept -6.0 -7.9 6.81 9.81 92
Propensity covariate 5.0 6.0 3.22 4.31 98
Contagion intercept -4.0 —4.2 0.56 0.51 100
Susceptibility 2.0 2.0 0.14 0.12 100
Infectiousness 2.0 2.1 0.36 0.37 100
Social Proximity 4.0 4.1 0.32 0.35 100
Panel 4: Large Effect of Susceptibility
Propensity intercept -6.0 —6.0 0.31 0.32 100
Propensity covariate 5.0 5.0 0.24 0.27 100
Contagion intercept -8.0 -8.2 0.62 0.58 100
Susceptibility 6.0 6.1 0.19 0.19 100
Infectiousness 2.0 2.1 0.42 0.36 100
Social proximity 4.0 4.1 0.50 0.42 100
Panel 5: Large Effect of Infectiousness
Propensity intercept -6.0 -7.9 6.50 5.91 72
Propensity covariate 5.0 6.0 3.26 2.95 94
Contagion intercept -8.0 -7.9 1.51 1.03 100
Susceptibility 2.0 2.0 0.17 0.13 100
Infectiousness 6.0 6.0 0.65 0.51 100
Social proximity 4.0 3.9 0.62 0.43 100
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TABLE 2 (contd.)

ML Estimate
True Average Reject H,

Parameter Value Mean SD SE (%)
Panel 6(a): Large Effect of Proximity
Propensity intercept -6.0 -6.4 2.46 1.40 100
Propensity covariate 5.0 5.3 1.38 0.83 100
Contagion intercept -8.0 -8.0 0.43 1.14 100
Susceptibility 2.0 2.0 0.11 0.12 100
Infectiousness 2.0 2.0 0.17 0.17 100
Social proximity 8.0 7.9 0.44 0.55 100
Panel 6(b): Very Large Effect of Proximity
Propensity intercept -6.0 -6.8 4.67 2.15 100
Propensity covariate 5.0 5.6 2.53 1.14 100
Contagion intercept -8.0 -10.5 3.74 55.40 62
Susceptibility 2.0 2.0 0.09 0.11 100
Infectiousness 2.0 2.0 0.15 0.14 100
Social proximity 10.0 12.5 3.79 55.41 62

Panel 6(c): Very Large Effect of Proximity, Summed over Proximate Cases Only

Propensity intercept -6.0 -3.6 1.96 1.21 92
Propensity covariate 5.0 3.6 1.27 0.75 98
Contagion intercept -8.0 — — — —
Susceptibility 2.0 2.0 0.11 0.12 100
Infectiousness 2.0 2.0 0.15 0.14 100
(Net)Social proximity 2.0 2.0 0.16 0.13 100
Panel 6(d): Very Large Effect of Proximity (Continuous Measure)
Propensity intercept -6.0 -6.2 2.70 2.46 90
Propensity covariate 5.0 5.2 1.45 1.25 98
Contagion intercept -8.0 -8.4 1.27 0.83 100
Susceptibility 2.0 2.0 0.13 0.12 100
Infectiousness 2.0 2.1 0.67 0.39 100
Social proximity 10.0 10.2 0.56 0.70 100
Panel 7(a): Baseline Model (20% Network Density)

Propensity intercept -6.0 -5.9 1.49 1.02 100
Propensity covariate 5.0 5.0 1.45 0.64 100
Contagion intercept -8.0 -9.7 3.18 20.26 74
Susceptibility 2.0 2.0 0.12 0.13 100
Infectiousness 2.0 2.1 0.42 0.35 100
Social proximity 4.0 5.6 3.55 20.40 68
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TABLE 2 (contd.)

ML Estimate
True Average Reject H,
Parameter Value Mean SD SE (%)

Panel 7(b): Baseline Model (20% Network Density) Summed over Proximate
Cases Only

Propensity intercept -6.0 =59 1.30 1.03 100
Propensity covariate 5.0 5.0 0.83 0.66 100
Contagion intercept -8.0 — — — —
Susceptibility 2.0 2.0 0.13 0.12 100
Infectiousness 2.0 1.7 0.24 0.24 100
(Net) Social proximity —4.0 -3.6 0.24 0.28 100
Panel 8: Quartile Adoption Times
Condition
Percentage 1 2 3 4 S 6a 6bc 6d Tab
25 0.08 0.14 0.06 0.11 008 0.21 019 0.03 1.02
50 0.70 1.44 0.12 140 0.08 0.46 048 0.06 3.68
75 331 6.62 029 2836 0.10 1.14 1.16 0.18 12.03

100 418.7 451.9 30.47 10’ 0.93 54.22 1199 16.11 686.8

These results help index how sensitive estimation is to big
sources of variation in specific components of the model. Naturally,
they are not an exhaustive exploration of such effects. While we see
rather small shifts in estimator quality corresponding to some large
shifts in parameter values, we suspect that the effects of any variable
can become so strong (or so weak) that estimator quality is de-
graded. Further simulations suggested one such case of interest—
estimation difficulty when social proximity effects become really
large. As shown in Panel 6(b), estimation deteriorates markedly
when the social proximity parameter is raised to 10. Estimated coeffi-
cients for both the contagion and the proximity effect are off target:
the former is too small, the latter too large. In addition, neither
parameter is reliably estimated, with (correct) rejection of the null
hypothesis in only two-thirds of the trials.

These problems arise because the very large effects of conta-
gion among socially proximate actors drown out all other sources of
intrapopulation influence. Recall that in these simulations social prox-
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imity takes the form of a linkage to three alters (i.e., three contacts) in
a social network. Hence, in Panels 6(b) and 6(c), the strength of
contagion within the network is 22026 [= exp(—8 + 10)/exp(—8) =
exp(10)] times larger than contagion outside the network. Contagion
effects reduce in practice to contagion among those directly linked in
the network. Estimation suffers because any model in which exp(8,) is
small and B, + § =~ 2(= —8 + 10) fits the data about as well.

When a single binary social proximity measure dominates the
process in this way, we find that it is best to allow contagion only
from directly connected members of the population (here, for those
for whom z,; = 1). The new, reduced model is

> exp(Bv, + y'w, + 8- 1)

SEF(NN(z,5=1)

r,(t) = exp(a’x,) +

> exp(y'w),  (6)

SEF()N(2,5=1)

= exp(a’x,) +exp(B’v, + 6)

where the contagion term is summed only over the prior adopters
linked to n. Then the contagion intercept 3, and the coefficient of z,,,
6, cannot be distinguished; hence the quantity estimated in Panel
6(c) is By + 8, which has a “true” value of 2(= —8 + 10). As Panel
6(c) indicates, this composite network effect is estimated without
bias and with high efficiency. Further, the effects of susceptibility and
infectiousness covariates are also estimated accurately. This is a sur-
prising and useful result since estimators of these effects are based on
at most three influential events per potential adopter.

The above treatment of social proximity focuses solely on how
coefficient magnitudes affect estimation. In fact, it is reasonable to
assume that the results are also contingent on how fine-grained infor-
mation is, and on characteristics of network structure as well. To
investigate the first issue, we employ the continuous proximity mea-
sure described above, where each pair of cases draws a value from
the distribution f(z) = 2(1 — z). Panel 6(d) indicates that estimator
quality is high even when we reexamine the parameter combination
that produced problems in Panel 6(b). Both Panels 6(b) and 6(d)
have correctly specified models, but the more fine-grained process in
Panel 6(d) is estimated better.

Difficulty in estimating social proximity effects also arises in
dense networks. We found it difficult to capture effects of social
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proximity accurately when network density (the ratio of actual to
possible ties) rises to 20 percent or more. Panel 7(a) demonstrates
the problem: Estimates of the contagion intercept and the proximity
effect again show high variance. When network density is high, weak
effects of proximity are not easily distinguished from the contagion
intercept, while strong effects of proximity hide effects of contagion
in the absence of direct ties. It again becomes useful to restrict conta-
gion to socially proximate alters, as Panel 7(b) shows.

Estimating a model in which only proximate cases are allowed
to be contagious is strictly speaking a misspecification of the model
because nonproximate cases also have tiny contagious influences. For
the conditions used to generate the data analyzed in Panels 6(b)—(c)
and 7(a)-(b), this model misspecification has few adverse impacts.
Indeed, simplifying the model in this way substantially improves the
quality of estimates, most importantly by reliably detecting the pres-
ence of the social proximity effect. This is an encouraging result,
which may also prove useful in research settings where all influences
are not reliably observed or where network contacts are sampled
rather than exhaustively enumerated. Further work on diffusion pro-
cesses may suggest other contexts in which particular strategies for
simplifying models are effective.

4.2. Specification Error: Models with Extraneous Variables

Our study of the impact of model misspecification begins with
overspecification—models that include extraneous variables, ones
not actually used to generate the simulated data. Standard statistical
theory implies that the estimated coefficients of extraneous variables
in linear models should have an expected value of zero: Including
them in the estimated model tends to increase the standard errors of
the other parameters (mainly due to correlations between regres-
sors) but not bias parameter estimates.

We use the parameter set in Table 1 as a baseline. In each
condition, we set a particular combination of the parameters to zero
in the model used to generate the data. Nonzero intercepts (for both
propensity and contagion) are retained throughout. To simplify pre-
sentation, we report only the percentage of trials where the null
hypothesis of no effect is rejected at the .10 significance level. The
null hypothesis should be (incorrectly) rejected for extraneous covari-
ates in 10 percent of the trials; it should be (correctly) rejected for
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generating covariates in a large but unknown percentage of the trials.
(The exact percentage depends on the power of the test, which is
difficult to calculate a priori.)

Panel 1 of Table 3 indicates that including extraneous variables
has little impact on the estimation of the effects of the covariates
actually used to generate the event histories. The null hypothesis is
rejected in over 90 percent of the trials for 25 of 27 effects. More-
over, coefficients of generating covariates are estimated without any
evidence of bias or inefficiency relative to those shown in Table 1
(results not reported for brevity). However, infectiousness effects are
underestimated in two conditions, yielding false negatives (Type II
errors) in about a fourth of the trials.

Extraneous variables with putative propensity and susceptibil-
ity effects are accurately estimated as having no influence on the
process. The percentage of false positives hovers around 10 percent
and never exceeds 16 percent. But detecting zero effects is less success-
ful in the case of infectiousness and social proximity. In many condi-
tions, false positives arise two or three times as often as the signifi-
cance level of the hypothesis test suggests. Examination of the actual
parameter estimates reveals that estimates of effects of extraneous
social proximity measures are particularly poor, with standard devia-
tions usually twice as large as mean estimates. Average standard er-
rors are an order of magnitude larger than standard deviations.

Once again, the problem involves the difficulty of separating
the effect of infectiousness from the contagion intercept. Since infec-
tiousness accelerates the population-level hazard rate of adoption
rather than the hazard rate at which specific cases adopt, it is some-
times confused with the contagion intercept. The same problem can
arise with social proximity effects, as the previous section highlights.

One approach to dealing with this problem is to employ conser-
vative significance levels when evaluating effects of infectiousness and
social proximity. In addition to this statistical approach to the prob-
lem, our results suggest two modeling considerations. First, Table 3
indicates that estimation difficulties are largest when the generating
process is actually homogeneous. The percentages of false positives
for infectiousness and social proximity decline when true heterogene-
ity in the diffusion process exists and is incorporated in the model. In
particular, it appears easier to rule out an extraneous social proximity
effect when variation in infectiousness is present, and vice versa. In

TABLE 3
Model with Extraneous Variables

Estimated Variable

Propensity Susceptibility Infectiousness Proximity

(%) (%) (%) (%)

Panel 1: Binary Ties
Intercepts only 10 8 24 22
Propensity 100 4 24 30
Susceptibility 2 98 24 12
Infectiousness 10 4 90 8
Social proximity 16 16 12 100
Propensity, susceptibility 100 100 30 24
Propensity, infectiousness 100 16 78 22
Propensity, proximity 94 8 8 92
Susceptibility, 12 100 98 16
infectiousness
Susceptibility, proximity 6 100 14 98
Infectiousness, proximity 8 6 100 100
No propensity 4 100 100 100
No susceptibility 100 16 100 100
No infectiousness 100 100 14 94
No proximity 98 98 72 20
Panel 2: Continuous Proximity

. Intercepts only 8 12 20 8
Propensity 100 16 26 18
Susceptibility 12 100 30 12
Contagiousness 10 4 90 8
Social proximity 12 10 14 100
Propensity, susceptibility 100 100 34 22
Propensity, infectiousness 100 4 74 18
Propensity, proximity 100 20 14 100
Susceptibility, 8 100 92 18
infectiousness
Susceptibility, proximity 6 100 8 100
Infectiousness, proximity 4 20 98 100
No propensity 4 100 98 100
No susceptibility 100 14 92 100
No infectiousness 100 100 22 98
No proximity 100 100 74 8

Note: Entries are the percentage of rejections of the null hypothesis that a parame-
ter is zero under a two-tailed 0.10 test. Incorrect rejection of the null hypothesis should
occur in 10 percent of the trials. Results for effects are in boldface.
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conditions with heterogeneity in social proximity, percentages of false
positives for an extraneous infectiousness effect are 12, 8, 14, and 14
percent; where social proximity is homogeneous, the corresponding
quantities are 24, 24, 24, and 30 percent.

Second, extraneous social proximity effects can be ruled out
better when measures are more fine grained. Panel 2 repeats the
simulation studies in Panel 1 except that binary proximity measures
are replaced by continuously-distributed proximity measures. Here
false positives occur at more appropriate levels. For example, the
null hypothesis for the effect of a continuously-distributed proximity
measure is falsely rejected in 8 percent of trials when no other covari-
ates are included in the model and an average of 13 percent of the
time across all conditions.

4.3. Specification Error: Models with Omitted Variables

We now turn to the estimation of models that omit covariates actu-
ally used in generating the event-history data. Omitting covariates
with nonzero effects from linear models leads to biased parameter
estimates and diminishes standard errors if the omitted covariates
are correlated with included covariates. Our simulation procedure
neither builds in correlations between covariates nor ensures that
they are zero in a given trial. The correlation between omitted and
included covariates approaches zero on average as the number of
trials increases, but a nonzero correlation exists in each trial due to
sampling variability. Reasoning by analogy with linear models, the
correlation between omitted and included variables may translate
across many trials into an increased standard deviation of estimated
parameters, a lower average standard error of estimate, and (hope-
fully) no bias in the mean estimated parameter.

To test how the estimation performs when covariates are omit-
ted, we studied four conditions. In the first three, we generated
event histories as in our baseline model, but included one additional
covariate with a standard Gaussian distribution. This variable af-
fected the propensity, susceptibility, or infectiousness terms, respec-
tively, with a coefficient of 2.0. In the fourth condition, each case was
made socially proximate to five members of the population (rather
than three). Estimated models omitted these additional covariates
(in the fourth condition, the two additional ties were ignored). Table
4 summarizes results.
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TABLE 4
Model with Omitted Variables

ML Estimate

True Average Reject H,

Parameter Value Mean SD SE (%)
Panel 1: Omitted Propensity
Propensity intercept -6.0 -6.5 5.25 0.87 100
Propensity covariate 1 5.0 4.6  2.58 0.55 100
Propensity covariate 2 2.0 — — — —
Contagion intercept -8.0 -8.0 0.70 0.58 100
Susceptibility 2.0 20 017 0.13 100
Infectiousness 2.0 1.9 045 0.39 100
Social proximity 4.0 40 043 0.43 100
Panel 2: Omitted Susceptibility
Propensity intercept -6.0 -4.5 0.82 0.36 100
Propensity covariate 5.0 4.0 0.71 0.34 100
Contagion intercept -8.0 -10.9 5.34 1.19 100
Susceptibility 1 2.0 24  0.60 0.15 100
Susceptibility 2 2.0 — — — —
Infectiousness 2.0 2.0 2.85 0.70 80
Social proximity 4.0 3.8 1.78 1.20 90
Panel 3: Omitted Infectiousness
Propensity intercept -6.0 =-7.7 6.90 1.83 98
Propensity covariate 5.0 6.0 4.14 0.99 100
Contagion intercept -8.0 -7.0 4.45 1.44 98
Susceptibility 2.0 20 020 0.12 ~ 100
Infectiousness 1 2.0 23 220 0.77 88
Infectiousness 2 2.0 — — — —
Social proximity 4.0 31 0.95 0.53 96
Panel 4: Omitted Social Proximity
Propensity intercept -6.0 -6.3 1.09 0.87 100
Propensity covariate 5.0 52 0.8 0.61 100
Contagion intercept -8.0 -17.7 1.18 0.72 100
Susceptibility 2.0 1.9 0.12 0.13 100
Infectiousness 2.0 2.0 0.62 0.46 100
Social proximity 1 4.0 3.7 0.40 0.43 100
Social proximity 2 4.0 — — — —
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Onmitting a measure of the propensity to adopt produces some
bias and considerable imprecision in the estimated propensity inter-
cept and in the estimated effect of the propensity measure, both of
which are underestimated. But estimated effects in the contagion
component of the model are unbiased and have low standard errors.
This is an important result because researchers can generally identify
many more plausible sources of a propensity to adopt than they can
measure. It seems that a heterogeneous diffusion model does not
require comprehensive specification of propensities to yield good
estimates of the effects of intrapopulation linkages and of contagion
(at least when the omitted and included effects are not highly corre-
lated). And even this conclusion probably does not hold when pro-
pensity effects are extremely large.

Omitting measures of susceptibility and infectiousness can pro-
duce imprecision in almost all components of the hazard rate, es-
pecially the contagion intercept, which exhibits a large standard
deviation across trials. As expected, the contagion intercept is over-
estimated when infectiousness measures are omitted and under-
estimated when susceptibility measures are omitted. Estimates of
propensity effects are also considerably affected. By contrast,
misspecification of social proximity effects (where two of five alters
are ignored) seems to do little to disrupt estimator quality: The conta-
gion intercept shifts upward somewhat, but the estimated effect of
social proximity seems to be unbiased. This finding offers consider-
able encouragement to researchers who are unsure if they can mea-
sure all linkages within a social network.10

4.4. Assigning Covariates to Types of Effects

In addition to the standard forms of misspecification discussed in the
previous section (inclusion of extraneous variables and omission of
generating variables), heterogeneous diffusion models are subject to
a more subtle form of misspecification. Analysts may correctly iden-
tify a variable as affecting the diffusion process but not know where
to locate the variable within the model. For example, a covariate that

101t is important to note that the sensitivity to unobserved linkages proba-
bly varies by network structure. For example, it is straightforward to show that
the unmodeled influence will be greater when the same proportion of influential
alters are unobserved in a denser network.
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actually affects the propensity to adopt may be incorrectly postulated
to affect susceptibility to contagion or the infectiousness of prior
adopters.

Often prior knowledge or theory usefully guides the re-
searcher. Covariates characterizing social relations within a popula-
tion naturally appear in the contagion component. Greve (1994)
suggests that variables characterizing organizational inertia should
affect susceptibility because inert organizations resist pressures to
innovate, despite the examples provided by others. However, plau-
sible rationales can often be developed for several different types
of effects. For example, Strang and Tuma (1993) note that network
centrality may increase the propensity to adopt (central actors are
often leading innovators), susceptibility to contagion (central ac-
tors receive more information than do marginal actors), and in-
fectiousness (central actors are more influential than marginal
actors). In such situations, a specification search is required to as-
sign effects to appropriate locations within the heterogeneous diffu-

sion model.

4.4.1. A Serial Location Search

We first examine estimator quality when a generating covariate is
incorrectly located within the heterogeneous diffusion model. We
consider the common modeling strategy where an analyst ventures a
plausible specification and retains variables estimated to have signifi-
cant effects. We separately examine six possible conditions: where
propensity is incorrectly specified as susceptibility or infectiousness,
where susceptibility is incorrectly specified as propensity or infec-
tiousness, and where infectiousness is incorrectly specified as propen-
sity or susceptibility. In each condition, we also include and correctly
model a measure of social proximity to determine the sensitivity of
other effects to misspecification.

Table 5 shows that propensity and susceptibility are easily
confused. A true propensity effect is usually estimated as a some-
what larger susceptibility effect, and a true susceptibility effect is
always estimated as a somewhat smaller propensity effect. Suscepti-
bility is also mistaken for infectiousness with some regularity (in
about 40 percent of the trials), but propensity is not. In all four
forms of misspecification, the ability to capture the correctly speci-
fied effect of social proximity falls dramatically. Estimated effects
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TABLE §
Misspecified Model
ML Estimate
True Average  Reject H,

Parameter Value Mean SD SE (%)
Panel 1: Propensity Effect Estimated as Susceptibility
Propensity intercept -6.0 =35 0.48 0.20 100
Propensity covariate x,, 3.0 — — — —
Contagion intercept -8.0 -11.1 2.67 5.69 96
Susceptibility x,, 0 3.9 2.32 0.83 92
Social proximity 4.0 0.9 3.90 16.1 36
Panel 2: Propensity Effect Estimated as Infectiousness
Propensity intercept -6.0 -3.8 0.35 0.25 100
Propensity covariate x,, 3.0 — — — —
Contagion intercept -8.0 —-13.8 6.31 53.4 34
Infectiousness x, 0 0.1 1.71 5.24 16
Social proximity 4.0 8.6 4.00 38.1 28
Panel 3: Susceptibility Effect Estimated as Propensity
Propensity intercept -6.0 -3.7 0.26 0.13 100
Propensity covariate x,, 0 1.3 0.20 0.11 100
Contagion intercept -8.0 -15.0 1.96 15.8 28
Susceptibility x,, 3.0 — — — —
Social proximity 4.0 5.4 3.41 21.7 0
Panel 4: Susceptibility Effect Estimated as Infectiousness
Propensity intercept -6.0 -4.9 0.72 0.36 100
Contagion intercept -8.0 -30.0 11.6 44.1 22
Susceptibility x,, 3.0 — — — —
Infectiousness x; 0 8.9 5.73 15.4 42
Social proximity 4.0 3.9 5.03 12.6 12
Panel 5: Infectiousness Effect Estimated as Propensity
Propensity intercept —-6.0 =75 2.05 1.95 94
Propensity covariate x,, 0 -0.0 1.55 1.32 2
Contagion intercept -8.0 -4.9 0.78 0.20 100
Infectiousness x; 3.0 — — — —
Social proximity 4.0 2.7 1.46 1.69 94
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TABLE 5 (contd.)

ML Estimate
True Average Reject H,

Parameter Value  Mean SD SE (%)
Panel 6: Infectiousness Effect Estimated as Susceptibility
Propensity intercept -6.0 -6.4 0.87 0.96 100
Contagion intercept -8.0 =5.0 0.90 0.21 100
Susceptibility x,, 0 0.0 0.09 0.10 6
Infectiousness x; 3.0 — — — —
Social proximity 4.0 3.0 0.64 0.52 98

Note: Both the omitted and incorrectly specified effects are denoted by x to stress
that they refer to the same covariate. When the covariate characterizes variation in cases at
risk, we subscript it by n; when it characterizes variation in prior adopters (spreaders), we
subscript it by s.

are usually biased, and average standard errors are inflated. A
similar problem occurs in the estimation of the propensity and con-
tagion intercepts.

~ By contrast, a true infectiousness effect is hardly ever con-
fused with either propensity or susceptibility. Misspecification here
yields estimated parameters centered around zero and low rates of
incorrect rejection of the null hypothesis. And incorrect modeling of
infectiousness does not strongly disturb estimated effects of social
proximity. These remain correctly estimated as positive and statisti-
cally significant, though estimated parameters show some downward
bias.

These results make sense in view of the functional form of the
model. The difference between propensity and susceptibility is that
the latter interacts with the cumulative number of prior events, which
is some monotonic function of time. The estimation procedure detects
the existence of an effect of the covariate on adoption timing; how-
ever, misspecifying where its effect is located leads to poor estimates
of the effect of both the misspecified variable and other variables in
the model. In addition, the relative importance of the contagion and
propensity components of the diffusion process is misjudged, with
propensity estimated as larger than it really is (see intercept estimates
in Panels 1 and 3). By contrast, infectiousness refers to characteristics
of the prior rather than the potential adopter. It thus produces little
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overlap with the variation produced by true propensity or susceptibil-
ity effects.

Overall, Table 5 makes it clear that an exploratory strategy of
serially assigning a covariate to one location within the model and
inspecting the results is not viable. False positives are as easily gener-
ated as true positives. Where effect location is not well understood
on a priori grounds, some other strategy is needed.

4.4.2. A Parallel Location Search

Table 6 examines the alternative strategy of simultaneously estimat-
ing effects in several locations in the model. This approach was em-
ployed by Strang and Tuma (1993) to locate the effects of network
centrality, but its effectiveness has not previously been evaluated. To
assess this approach, we again generate event histories where some
covariate has a propensity, susceptibility, or infectiousness effect.
But we now estimate models where that covariate is assigned both its
true effect and also some other effect that it does not really have. For
example, Panel 1 shows event histories generated with a covariate x,,
affecting the propensity to adopt and analyzed with that covariate
treated as having both a propensity and a susceptibility effect.

This search strategy correctly assigns covariates to the appro-
priate location in the model. In particular, propensity and suscepti-
bility effects are no longer confused. In conditions 1 and 3, false
positives occur in 6 and 14 percent of the trials, respectively, a
dramatic decline from the levels of the previous search strategy,
where they occur in 92 and 100 percent of the trials, respectively.
There continues to be little difficulty in distinguishing infectiousness

TABLE 6
Model Using Parallel Location Search
ML Estimate
True Average Reject H,
Parameter Value Mean SD SE (%)

Panel 1: Propensity Effect Estimated as Propensity and Susceptibility

Propensity intercept —6.0 -6.3 1.08 0.91 100
Propensity covariate x,, 3.0 3.2 0.66 0.59 100
Contagion intercept -8.0 -8.4 1.77 5.49 96
Susceptibility x, 0 0.0 0.18 0.18 6

Social proximity 4.0 4.3 1.88 5.72 94
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TABLE 6 (contd.)

ML Estimate

True Average Reject H,

Parameter Value Mean SD SE (%)
Panel 2: Propensity Effect Estimated as Propensity and Infectiousness
Propensity intercept -6.0 -6.2 1.00 0.78 100
Propensity covariate x,, 3.0 31 0.72 0.53 100
Contagion intercept -8.0 -8.1 0.48 0.51 100
Infectiousness x, 0 0.0 0.22 0.24 8
Social proximity 4.0 4.1 0.73 0.78 100
Panel 3: Susceptibility Effect Estimated as Propensity and Susceptibility
Propensity intercept -6.0 -6.6 2.26 1.46 96
Propensity covariate x,, 0 0.2 1.43 0.75 14
Contagion intercept -8.0 —-8.0 0.30 0.32 100
Susceptibility x,, 3.0 3.0 0.24 0.19 100
Social proximity 4.0 3.9 0.47 0.46 100
Panel 4: Susceptibility Effect as Susceptibility and Infectiousness
Propensity intercept -6.0 -6.0 0.35 0.34 100
Contagion intercept -8.0 -8.1 0.34 0.34 100
Susceptibility x,, 3.0 3.1 0.20 0.21 100
Infectiousness x; 0 -0.1 0.29 0.26 16
Social proximity 4.0 4.1 0.40 0.45 100
Panel 5: Infectiousness Effect Estimated as Propensity and Infectiousness
Propensity intercept -6.0 -7.4 5.31 2.76 98
Propensity covariate x,, 0 0.80  2.36 1.33 16
Contagion intercept -8.0 -8.2 0.95 0.67 100
Infectiousness x; 3.0 3.1 0.40 0.35 100
Social proximity 4.0 4.0 0.45 0.34 100
Panel 6: Infectiousness Effect Estimated as Susceptibility and Infectiousness
Propensity intercept -6.0 =5.7 0.64 0.73 100
Contagion intercept -8.0 -8.1 0.76 0.65 100
Susceptibility x,, 0 0.0 0.11 0.11 12
Infectiousness x; 3.0 3.0 0.43 0.35 100
Social proximity 4.0 4.0 0.27 0.34 100

Note: Both the omitted and incorrectly specified effects are denoted by x to stress
that they refer to the same covariate. When the covariate characterizes variation in cases at
risk, we subscript it by n; when it characterizes variation in prior adopters (spreaders), we
subscript it by s.
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from propensity and susceptibility, and the other parameters in the
model are estimated without bias or inefficiency.

We stress the importance of this result. Although an analyst
may have plausible grounds for suspecting that a covariate affects the
diffusion process in a particular way, such intuitions are often not yet
supported by any substantial base of empirical knowledge. An effec-
tive exploratory strategy is thus critical. The above results strongly
recommend parallel rather than serial analysis of multiple modes of
influence.

4.5. Multiple Effects of a Single Variable

The above findings immediately draw attention to processes where a
single covariate really does exert multiple forms of influence. For
example, a covariate might simultaneously increase a case’s propen-
sity to adopt and its susceptibility to the prior adoptions of others; or
it might increase susceptibility and also diminish infectiousness. It is
important to be able to locate such complex patterns of influence,
especially if models treating covariates as having several potential
forms of influence are employed frequently in exploratory analyses.
Further, a study of such processes also provides a worst case of
multicollinearity in explanatory factors.

The literature supports the notion that multiple forms of influ-
ence are to be anticipated. For example, Strang and Tuma’s (1993)
reanalysis of Coleman, Katz, and Menzel’s (1966) prescription drug
study found that centrally located physicians were both more suscep-
tible to influence and less infectious per tie, though more infectious
over all ties (Strang and Tuma 1993, table 5). Further, potential
multiple effects extend all the way from propensity to social proxim-
ity. Strang and Tuma found that physicians with a science orientation
were quicker to prescribe “gammanym” than physicians with a
patient-centered orientation, and additionally that physicians are es-
pecially influenced by physicians who share their orientation.

Table 7 reports estimates of conditions where a single covari-
ate has multiple effects on the diffusion process. For example, Panel
1 shows results for trials where a covariate x; multiplies the propen-
sity to adopt by 5 while also increasing susceptibility to diffusion by

TABLE 7

Double Effect Model

ML Estimate

True Average Reject Hy

Parameter Value Mean SD SE (%)
Panel 1: Propensity and Susceptibility
Propensity intercept -6.0 -6.4 1.18 1.31 100
Propensity covariate x, 5.0 5.2 0.69 0.78 100
Contagion intercept -8.0 -8.1 0.64 0.67 100
Susceptibility x, 2.0 2.0 0.18 0.16 100
Infectiousness covariate 2.0 2.0 0.42 0.45 98
Social proximity 4.0 4.0 0.32 0.43 100
Panel 2: Propensity and Infectiousness
Propensity intercept -6.0 =59 0.69 0.79 100
Propensity covariate x,, 5.0 5.0 0.49 0.52 100
Contagion intercept -8.0 -8.8 2.26 1.51 96
Susceptibility 2.0 2.0 0.16 0.14 100
Infectiousness x; 2.0 2.4 1.23 0.79 96
Social proximity 4.0 4.0 0.48 0.47 100
Panel 3: Susceptibility and Infectiousness
Propensity intercept -6.0 -6.0 0.82 0.78 100
Propensity covariate 5.0 5.1 0.59 0.52 100
Contagion intercept -8.0 —-8.0 0.90 0.78 100
Susceptibility x,, 2.0 2.0 0.11 0.13 100
Infectiousness x; 2.0 2.0 0.50 0.46 98
Social proximity 4.0 3.9 0.44 0.44 100
Panel 4: Propensity and Susceptibility
Propensity intercept -6.0 -6.3 0.82 0.69 100
Propensity covariate x, 5.0 5.3 0.63 0.49 100
Contagion intercept -8.0 —-8.1 0.80 0.73 100
Susceptibility x,, -2.0 2.0 0.21 0.19 100
Infectiousness 2.0 2.1 0.38 0.43 100
Social proximity 4.0 4.0 0.43 0.45 100
Panel 5: Propensity and Infectiousness
Propensity intercept —6.0 =57 0.59 0.51 100
Propensity covariate x, 5.0 4.9 0.46 0.40 100
Contagion intercept -8.0 -8.1 0.43 0.45 100
Susceptibility 2.0 2.0 0.14 0.14 100
Infectiousness x, -2.0 -2.0 0.31 0.31 100
Social proximity 4.0 4.0 0.43 0.41 100

415
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TABLE 7 (contd.)

ML Estimate
True Average Reject H,

Parameter Value  Mean SD SE (%)
Panel 6: Susceptibility and Infectiousness
Propensity intercept -6.0 -6.0 0.59 0.59 100
Propensity covariate 5.0 5.0 0.44 0.43 100
Contagion intercept -8.0 -8.1 0.60 0.59 100
Susceptibility x,, 2.0 2.0 0.15 0.14 100
Infectiousness x; -2.0 -2.1 0.45 0.44 100
Social proximity 4.0 4.0 0.52 0.46 100

Note: Both the omitted and incorrectly specified effects are denoted by x to stress
that they refer to the same covariate. When the covariate characterizes variation in cases at
risk, we subscript it by n; when it characterizes variation in prior adopters (spreaders), we
subscript it by s.

2. We examine six sets of “just-specified” models, testing both same-
sign and opposite-sign pairs of effects.!!

Multiple influences are clearly distinguished and accurately esti-
mated in these correctly specified models. Throughout, estimated pa-
rameters are close to their true values and indices of variability in the
estimates are at normal levels. The matrix of correlations between pa-
rameters (not reported here) does not show any unusual patterns, and
the null hypothesis of zero effect is correctly rejected in 100 percent of
the trials. None of the parameter combinations produces problems.
Multiple effects of a single variable (and by implication, high correla-
tions among conceptually distinct measures) do not impede estima-
tion when the effects are located in different parts of the model.1?

5. DISCUSSION

This paper has explored the estimation of a heterogeneous diffusion
process from the perspective of practical research issues. We believe

l1Covariates that increase the propensity to adopt may diminish suscepti-
bility to contagion. For example, Strang and Bradburn (1993) find that states
with high health-care costs have a high propensity to pass health-care legislation,
but are less susceptible to the influence of laws passed by other states.

12Further work might pursue this problem, giving special attention to corre-
lations between covariates and social proximity effects since much research shows
that network ties are likely to be established by similar actors (Marsden 1988).
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that substantial theoretical benefits result from developing sociologi-
cal models that explicitly treat social networks as channeling behav-
ior. While relatively few empirical analyses focus single-mindedly on
the structure of intrapopulation influences, a variety of studies em-
ploy social contagion as one component of a sociological explanation
(for example, see Fligstein 1987; Zhou 1993). But relatively little is
known about the conditions under which heterogeneous diffusion
models can be effectively estimated.

Overall, our Monte Carlo studies suggest that complex hetero-
geneous diffusion models can be reliably estimated within an event-
history framework. But a number of potential analytic problems
arise that empirical research would do well to take into account. In
most instances, the studies reported above suggest measurement and
modeling strategies that reduce the risk of inappropriate inference to
acceptable levels.

Graphical examination of the hazard rate or integrated hazard
rate estimated from event histories generated by a heterogeneous
diffusion model suggests the flexibility of this model. Apparent time
dependence in the population-level hazard rate may be positive,
negative, or nonmonotonic, depending on whether the diffusion pro-
cess is dominated by heterogeneity in propensity, susceptibility, infec-
tiousness, or social proximity. Although graphical analysis can be
used to suggest what sorts of effects may be dominant, it should not
be employed to decide whether a process involves social contagion.
This decision must rely on substantive theory and statistical inference
from appropriately specified models.

Maximum likelihood estimation of correctly specified models
appears able to decipher the structure of the kinds of heterogeneous
diffusion processes analyzed here, with little variation in estimator
quality over parameter values. Our simulation studies indicate that
continuous measures of social proximity do better than dichotomous
indicators, both by avoiding false positives in homogeneous diffusion
processes and by correctly inferring strong effects of social proximity.
Sparse social networks with powerful contagion effects proved diffi-
cult to disentangle from homogeneous diffusion processes. And
dense social networks provide too many possible lines of influence to
be estimated well. An effective strategy under these conditions is to
acknowledge the strong impact of network linkages explicitly and
treat all social contagion as channeled through these relations.
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To explore the consequences of model misspecification, we
examined the effects of including extraneous variables, omitting gen-
erating variables, omitting some linkages from a focal case’s social
network, and misidentifying the location of a covariate’s effect. All
of these are relatively standard problems for empirical research,
where analysts (hopefully) do not write Monte Carlo programs to
generate their data.

The inclusion of extraneous covariates does not impede the
estimation of covariates with nonzero effects. But false positives for
putative infectiousness and effects of binary measures of social prox-
imity arise almost twice as often as standard theory for linear models
would suggest. This result warrants closer theoretical inspection—
we are unaware of analytic attention to the properties of covariates
that characterize cases other than those at risk. A simple strategy
when assessing possible effects of infectiousness and social proximity
is to employ conservative significance levels.

The exclusion of generating covariates (in the event-history
literature, the classic issue of unobserved heterogeneity) mainly pro-
duces localized reductions in estimator quality. Omitting a measure
of the propensity to adopt degrades the quality of estimates of pro-
pensity component but not those in the contagion component. Omit-
ting variables from the contagion component degrades the quality of
estimated parameters in the contagion component and has smaller
but noticeable effects on the quality of parameter estimates in the
propensity component.

Finally, and perhaps most importantly, we considered whether
estimation could discover what sort of effect a covariate has within a
heterogeneous diffusion model. If locations are examined serially,
the answer is no. Most prominently, propensity and susceptibility to
contagion cannot be easily separated. False positives result from
modeling propensity as susceptibility and also from modeling suscep-
tibility as propensity.

However, models that treat covariates as simultaneously affect-
ing the diffusion process in multiple ways prove a powerful instru-
ment for exposing true relationships. For example, when a covariate
that actually affects the propensity to adopt is modeled as affecting
both the propensity to adopt and susceptibility to prior adoptions of
others, the former effect is accurately captured and the latter is
correctly identified as zero. Further, event histories where variables
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actually impact the process in multiple ways can be accurately esti-
mated when models are correctly specified. These results strongly
recommend an exploratory analysis of multiple effects on the diffu-
sion process where prior theory does not insist on a more parsimoni-

ous approach.
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STATISTICAL INFERENCE FOR
APPARENT POPULATIONS

Richard A. Berk*
Bruce Westernt
Robert E. Weiss™

In this paper we consider statistical inference for datasets that
are not replicable. We call these datasets, which are common in
sociology, apparent populations. We review how such data are
usually analyzed by sociologists and then suggest that perhaps
a Bayesian approach has merit as an alternative. We illustrate
our views with an empirical example.

1. INTRODUCTION

It is common in sociological publications to find statistical inference
applied to datasets that are not samples in the usual sense. For the
substantive issues being addressed, the data on hand are all the data
there are. No additional data could be collected, even in principle. In
this paper, we call the complete set of all units comprising such data-
sets an “apparent population.” Consider the following examples.
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